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PREFACE

The two papers included here describe some of the major results of our

automatic program synthesis project and indicate some of our goals for the

future. The first paper gives a detailed and very precise description of our

algorithm for program synthesis from computation traces. The other paper gives

a brief overview of the automatic programming system within which the above

algorithm is being used.
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Speeding up a Program Synthesizer

Alan W. Biermann, Richard Baum, Frederick E. Petry

Department of Computer and Information Science
The Ohio State University

Abstract

An algorithm is given for synthesizing a computer program from a trace
of its behavior. Since the algorithm involves a search, the length of time
required to do the synthesis of nontrivial programs can be quite large.
Techniques are given for preprocessing the trace information to reduce enu-
meration, for pruning the search using a failure memory technique, and for
utilizing multiple traces to the best advantage. The results of numerous
tests are given to demonstrate the value of the techniques.

keywords: program synthesis, inference, learning, program inference, finite-
state machine synthesis, incompletely specified machines



I. INTRODUCTION

The two most important problems to overcome before a practical auto-

matic program synthesizer can be developed are

(1) how to design the input to the synthesizer so that it is in a

form easily used by human beings, and

(2) how to speed up the synthesis through intelligent use of the input

information so that large programs can be synthesized in a practical

amount of time.

Since it is always possible to simply enumerate the set of all programs until

one is found which satisfies the given conditions, the question is not whether

the program can be synthesized but whether it can be discovered after a reason-

able amount of computation. The designer of an automatic program synthesizer,

therefore, needs a technique for transmitting information from the human user

to the machine in a form which is easily used by both. This paper will suggest

that example computations may be a proper vehicle for such man-machine communi-

cations.

We know that when humans communicate ideas to each other, examples

play a primary part. It is difficult, for example, to imagine any kind of

explanation of how to write a program or do a particular calculation without

including some particular cases of how the process is done. Since teaching

and learning by example seem to be a natural mode of communication for humans,

it does not seem unreasonable to believe that a man and a machine might com-

municate in the same way.

Recent results in inference theory [9, 10, 11, 12, 14,15,17]show that

not only can man learn from examples, but machines can also. With regard

to the program synthesis problem, Biermann [91 has given an algorithm for

generating programs from computation traces, and Raulefs [26] and Barzdin

[6] have also studied the problem. These papers seem to indicate that correct



programs can be synthesized on the basis of relatively little input information,

often only one sample computation, but that the amount of time required to do

the synthesis grows very quickly as a function of program complexity. Typical

computation times for constructing the one, three, and five state Turing machine

controllers given in [9] were about one, five, and one hundred seconds,

respectively. The implications are clearly that programs of practical interest

will never be synthesized unless either the old methods are speeded up or new

ones are developed. This paper will present a number of techniques for speeding

up the synthesis process and will show that most of the searching done by the

algorithm in -[9) is, in fact, unnecessary. Many of the examples that were done

in that research involved long searches with dozens or hundreds of backups

whereas often only two or three were necessary. The greatly increased power

of the techniques discussed here makes it possible to synthesize programs of

significant complexity in just a few seconds of time.

The goal of our research is the development of what we call an autopro-

gramming system. Such a system gives the user a facility for the easy generation

of example computations. We are currently `ling a computer display system on

which appear data structures declared by the user and the commands available

for doing a calculation. The user executes an example calculation by referencing

the commands and their operands (among the data structures) with a light pen

in scratch pad fashion. The contents of the data structures are continuously

updated as the calculation proceeds. While the example is being carried out,

the machine records the sequence of commands, and later, after one or several

examples have been completed, it constructs the shortest computer program which

is consistent with these computation traces. As an illustration, the user might

spend several minutes sorting by hand with the light pen the list of integers

(3, 2, 1, 4) using some algorithm. After a fraction of a second of computing,

the machine would type out a general program for the algorithm which sorts N

integers. This example is explained in more detail in Section V.

-.3-



If the synthesized program should exhibit some shortcomings, the individua]

could input additional computations wh'_11 would force the system to appropriately

revise the generated program. It is well known [9, 18] that any program (or its

equivalent) may be generated in this manner.

This paper will discuss the core of the autoprogramming system, the pro-

gram synthesizer, and another paper [13] will describe the autoprogramming lan-

guage that we have implemented and its operation. Fortunately, the program synthe-

sizer is quite language independent and so no details of any language need be

discussed here.

It is important that our goals in this work not be confused with those

of many of the well known researchers on program synthesis methods: Amarel

[1, 2], Balzer [5], Waidinger and Lee [29], Manna and Waldinger [23] and othersl.

These individuals are interested in designing systems which actually synthesize

the algorithm for doing the problem from very weak input information such as

input-output pairs or a formal specification of the desired performance. Such

work is extremely important from the artificial intelligence point of view because

it addresses the problems of what is thought, how should knowledge be represented,

and so forth. Our interest however is in man-machine communication, and we assume

that the user already knows how to solve the problem. Our goal is not to auto-

matically synthesize an algorithm but rather to provide an easy means for trans-

mitting the user's concept of the algorithm to the machine. We suspect that the

major problem for today's practical programmers is more often a problem of

communication with the machine than discovery of an algorithm.

1See the Proceedings of the Third International Joint Conference on Artificial
Intelligence, Stanford, California, August, 1973.



The careful reader will notice that in this paper we are synthesizing

minimal incompletely specified machines as was done in [3, 4, 20, 21, 22, 25].

In fact, our preprocessing stage where "difference vectors" are constructed

has some resemblance to these earlier methods where "compatibility sets" were

assembled in the first stage of the synthesis. However, our search technique

is quite different from those of previous approaches and heavily uses the special

characteristics of our problem to obtain maximum efficiency. The synthesis

methods for completely specified machines such as described in [19] and [28]

of course require no searching at all but they are not applicable to the

problem discussed here.



II. A SYNTHESIS PROCEDURE

Suppose an individual sitting at a display terminal executes an example

computation using some kind of autoprogramming language: read into register 1,

add register 1 to register 2, shift register 2 right one digit, and so forth.

The contents of all of the registers are visible on the display and the results

of each command are immediately updated. Assume that the sequence of commands

is 11,12,12,12.V1:11,12,C1:12,12,C1:11,C2:halt. I1 and 12 represent

instructions executed, and C
1
and C

2
represent the existence of some tested

condition such as register 1 is positive or register 1 exceeds register 2.

Then the task of the synthesizer is to produce the simplest possible program

which is capable of executing this trace.

Each instruction Ij may occur several times in the same program so the

k
th

occurrence of Ij will be denoted kIj. Then the program can be constructed

as shown in Figure 1 where the task is to find which occurrence RI. in the

program corresponds to each particular Ij in the trace. Let us assume that

there will be a limit of or fewer instructions in the final program not

including tests and branches so that the instruction set will be either

f111,112,1131, (111,211,112,1131, {111,112,212,113}, or {111,112,113,213}.

(Note that the halt instruction is denoted Is.) Thus each instruction

11,12, and 13 must appear at least once and there can be no more than L=4

instructions.

A detailed description of the example of Figure 1 is given in Figure 2.

The pointer IND is advanced down the trace and each instruction execution

Ij is associated with a particular kIj in the program where k is set to the

lowest number which has not been found to be contradictory. After the eighth

step in Figure 2, the partial program of Figure 3(a) has been constructed.

Notice that this partial program implies that the fourth instruction executed

must be 112. This is called a forced move and when it is entered by step 9

of Figure 3 it is parenthesized. An infinite loop would result except that

condition C1 is observed at the sixth entry in the trace followed by an

-6-



1

condition
initial first second

instruction synthesis backup backup

I1 1I
1

third
backup

fourth
backup

2 1
2

11
2

3 1
2

11
2

21
2

4 1
2

(112) 11
2

5 1
2

(1I
2)

(212)

6 C
1

I
1

111 2I121
1

31
1

7 I
2

(1I
2
) 11

2
21

2
(1I

2
)

8 C
1

1
2

X X 1I
2

9 1
2

(21
2
)

10 C1 I
1

(1I
1
)

11 C2 halt

X indicates a contradiction found.

(XI
3
)

Figure 1. The example trace and the
creation of the flow diagram.



Step Condition Execution

1

2

3

4

5

6

7

8

9 Forced move
10
11 Forced move
12

13
14

15 Forced move
16
17 Forced move yields

a contradiction
18
19
20
21

22 Forced move yields
a contradiction

23

24 Allowed number of
states L is exceeded

25

26 Allowed number of
states L is exceeded

27

28

29

30

31

32

33

34

35

36
37

38

39

40
41
42

43
44

45

Forced move

Forced move

Forced move

Forced move

Halt instruction
reached

Read L
IND.- 1
Give instruction I the name 1Ij

IND 4- IND + 1

Give instruction I4 the name 1I
IND 4- IND + 1

Give instruction I4 the name 1I
IND 4- IND + 1

Indicate forced move parenthesized
IND 4- IND + 1,

Indicate forced move parenthesized
IND 4- IND + 1

Give instrution the name 1I
IND 4- IND + 1

Ij

Indicate forced move parenthesized
IND4-4- IND + 1

Decrease IND to last unparenthesized move

Increment name kI. to (k+1)I
IND 4- IND + 1 J

i

Give instrAction I the name 11
IND 4- IND + 1 i i

Decrease IND to last unparenthesized move

Increment name kI to (k +l)I.

Decrease IND to last unparenthesized move

Increment name kIj to (10.1)Ij

Decrease IND to last unparenthesized move

Increment name k I (k+1)to Ij

IND 4- IND + 1

Give instruction I the name 1 Ij

IND 4- IND '..- 1

Indicate forced move parenthesized
IND 4- IND + 1
Give instruction I4 the name 1I
IND 4- IND + 1
Indicate forced move parenthesized
IND 4- IND + 1
Give instruction the name 1I.
IND 4- IND + 1

Ij

Indicate forced move parenthesized
IND 4- IND + 1
Indicate forced move parenthesized
IND 4- IND + 1

Give instruction I_, the name 1I
Print the solutionJ

halt

Figure 2. Working the example of Figure 1.

1

Entry
IND made

1

3

4

5

6

7

8

6 first
backup
21

1

11
2

7 second
backup
21

2

6 third
backup
31

1

3 fourth
backup
21

2

1I
1

(112)

(112)

1I
1

(112)

7

8

4

5

6

7

8

9

10

11

11
2



I

1

I

lIi

I

_1

Ci

la) (b) (c)

C
2

tr-

Il

Figure 3. The construction of the program
for the trace of Figure 1.
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instruction I
1

. (See Figure 1.) This instruction is assumed to be 1I
1

in

the program yielding the flow chart of Figure 3(b). This flow chart is

compatible with the first seven steps of the trace but it yields a contradic-

tion at step eight implying that a previous decision was incorrect. So the

pointer IND is decreased to the last move which was not forced (IND = 6) and

instruction Il is given the new name 211. This process is continued as detailed

in Figure 2 until a compatible flow diagram is found as shown in Figure 3(c).

If no four-instruction compatible flow diagram existed, backing up would

eventually reach the beginning of the trace and the method could be tried again

with L = 5.

The reader should note that the condition C
i
before an instruction on

a trace is included whenever it is checked and found to be true. It is omitted

if either it is not checked or not true. Consequently, on a synthesized

flow diagram, a particular instruction may have several transitions leading

away, one blank and the others labelled C
1,

C2,...,Ck. In this case, each C
i

is assumed to be disjoint from Cj if i # j and the unlabelled transition is

taken if none of Cl,C2,...,Ck is true.

The procedure described above is enumerative and will surely find a

flow diagram compatible with the given trace if one exists with L instructions.

If no solution is found, the method can be repeated as L is increased until

one is found. After the first solution is discovered, the enumeration can be

continued until additional solutions are found. This algorithm is similar

to the one reported in [9] except that programs are modelldd with Moore machines

here rather than with Mealy machines
2

. This seems to be a more natural model

and has led to many insights for improving performance. Sections III and IV will

describe several techniques for pruiing the search tree and greatly increasing

the algorithm efficiency.

2
In this paper we discuss flow charts and Moore machines interchangeably.

Thus instructions represent states and flow lines represent transitions.

-10-



In order to make some of these ideas more precise, it is necessary to

introduce additional notation. [Ii ] will be used to designate the ordered set

{1I
i
,21.,...,K.I.} of occurrences of I

i
in a synthesized program. For

3 3 3

example, in Figure 3(c), [12]={112,212}. K will denote the number of different

instructionsintheprogramandK.will denote the number of occurrences of

the instruction I,. The condition C
i
and the, instruction I. at the kth level

of the trace will be denoted N
k

and 0
k'

respectively. Thus in the trace of

Figure 1, we have N1= (blank), 01=I1,N6=C1,06=I1, and so forth. The cardinality

of set S will be written ISI.

The function of the synthesis algorithm is thus to

(1) determine I[I ]I for j=1,2,...,K subject to the constraint .hat

K
1[1.] 1 is minimum, and

j=1

(2) determine which member of [Oil corresponds to each specific

occurrence of 0. in the trace.
3

To facilitate discussion of the above points, we introduce a selector variable

(or state number) Si which is associated with the j th level of the trace.

Theselectorvariablepointstotheelementof[0.]that corresponds to the

occurrence of 0 . Thus (2) can be restated: For each level j, determine the

value of S3. One can check that in the final solution of Figure 1, S1=1,

52 =1, S
3
=2, S

4
=1, S

5=2, etc.. Since the synthesized program is to be deterministic,

the assignment of a value to S3 is subject to this constraint: If there are

levels i and j such that, id,
i-1

=5
j-1

, N=Nj, and Oi=0j,

then Si must be the same as Si. If the previous condition is satisfied, we

say that Si is forced; otherwise it is arbitrary. Since the search changes

the values of parameters dynamically, we will use the notation 'name'* to represent

the current (perhaps transient) value of the entity 'name'.
K

The state count SK* is the current value of E I[I. ]*I and
j=1



the state limit L gives the maximum value for SK* permitted during the synthesis.

If S , S
2 "Ty,Sj

are incorrectly assigned values, then a contradiction will occur.

Assignment at level j causes a contradiction if either

(1) there is a level i,i4j, such that 0i -1 S
i-1

=S
j-1

N =N and
i-1 i j'

either 0
i
#0

j
or it is known that SiOSi, or

(2) SK* becomes greater than L.

An obvious synthesis technique is to simply try all possible assignments

of S
1

, 52,...,S (assuming a trace of length M) for increasing values of L

until a contradiction free (or compatible) assignment is found. Then the

transition set of the synthesized (or compatible) machine is

{(0-10j_i,Ni,00j) 114i0}. The problem with a strictly enumerative technique

is that as L-K becomes larger, the search space grows exponentially and the

processing time for the synthesis becomes prohibitive. The next section will

address the problem of limiting this search.

Before leaving this section, one can study a second example of the

synthesis technique by applying the method described above to the computation

trace in Figure 2. When this is done, the program of Figure 4 results illustrating

that the synthesis technique can be employed to create its own program. The

program of Figure 4 does, in fact, correctly express the synthesis algorithm

discussed above and will be the starting point for the treatment in Section III.

The reader who takes the trouble to work out this second example will discover

that the desired program is created directly without any srarch or backing up.

This always occurs when the program being constructed he.3 no duplicated instruc-

tions, and we can even state a theorem: If the desirA program has no duplicated

instructions and if the given trace covers every transition in that program,

then the program will be synthesized directly without any searching. Thus

searching is only required to resolve the ambl.guities which result from multiple

copies of the same instruction in a program. This has important implications

for practical synthesis problems because typical programs usually have few

duplications.
-12-z



Read L

IND 4-1

Halt instruction
reached

Give instruction I the name 11j

Forced move yields
a contradiction

Decrease IND to last
unparenthesized move

Increment name kI
to (k+1)I J

IIND 4- IND + 1

Print the solution

Forced move

Indicate forced move
parenthesized

Allowed number of
states L is exceeded

Figure 4. Flowchart for the synthesis algorithm.
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III. PRUN1gG TECHNIQUES

To make the synthesis process feasible it is necessary to find a way to

reduce the search space. Pruning techniques fall into two categories: dynamic

and static. Static processing performs a ,structural analysis of the trace without

considering the effects of assigning specific values to the selector variables.

Dynamic processing is performed while the search is in progress and uses all assigned

selector variables as well as a record of potential contradictions to avoid mistakes.

Static processing, also called preprocessing, scans the trace and builds up

nonequivalence information which is subsequently used 'y the dynamic phase of the

synthesis.

Preprocessing makes use of distinguishing sequences found in the trace to

differentiate 0-equivalent states. Let i and j be levels in the trace where

i
=0

j
(assume i4j). If N

i
=N

j+p
for p=1,2,...,k and 0

i+q
=0
j+q

for qe0,1,...,
+p

k-1 and 0
i+k

00
j+k

then the states represented by S 0
i
and SJO

j
are k-nonequivalent.

It then follows that SiOSJ. This information is kept in a difference set Dyi



associ8ted with each level I. DVI is defined as the set:

{ilt<im and Oi=09 and Aid}.

We now use the difference sets to determine a lower bound or initial guess
K

Lk for each I[I01. A lower bound for L is then given by Z L,. Lk is the largest
k=1

m such that, there exist levels (11142<...4m) having the following

properties:

(1) 0 =0 =...=0 =I
k

and
tl 12

1m

(2) For i=2,3,...,m: tiEDV, for j=1,2,...4-1

j

We will now introduce the parameters required to describe dynamic processing.
K

The free state limit FL is defined as L- E Li. If FL>0 then I[I.]I>Lj for one
J

or more values of j. Level i is called tgiworking level WL* if Sl,S2,...,S

have been assigned values but Si
+1,...,SM

remain unassigned. The free state
K

count F* is given by F- E max(I[Ii]*1-Li,0). Most of the actions of dynamic
1=1

processing are dependent on the contents of a failure memory FM. The failure

memory may be conceptually visualized as an M by L matrix with each row FMj

corresponding to a level in the trace. Each matrix element FMij is a couple

(Wij,Gij). W
ij

is called the structure factor and G
ij

is called the free state

factor. The effect each FM
ij

has on the search depends upon whether the element

is valid, latent, or null. An element is valid if Wij>0 and

F*<Gij, an element is latent if wifo and F *>Gij, an element is null if

W
ij

=0 and an element is invalid if it is null or latent. A latent or valid

element will become null if WL* ever becomes less than Wij. If FMij is valid

then S
i
may not be assigned the value j. Some of these definitions are summarized

in Figure 5.

F*<G
ij F *>Gij

Wij>0 valid I latent

W
ij
=0 null

Figure 5.



This therefore outlines the basic failure memory technique. For example,

suppose it is known from other considerations that if at working level 9 the

selector variable S
9

is set to value 2, then a contradiction will later result.

Then the failure memory entry at FM9,2 will be valid, and during the search,

S
9
may be set to 1,3,4, etc. but it should never be set to 2. Clearly if large

numbers of failure memory entries are valid, the number of, alternative settings

for each S
i
will be greatly reduced and so also will be the total size of the search.

Suppose also that (3,4) is the entry in S
9
which is valid. This means that the

above assertion (S
9

will cause a later contradiction) is known to be true

if

(1) no changes have been made at level 3 or above since the entry (3,4)

was made, i.e. S
1
,S

2
,S

3
are unchanged,

and

(2) there are fewer than 4 free states currently available, F*<G
9,2

=4.

The entry (3,4) may be interpreted as an indicator of the cause of failure. The

setting S
9
=2 will yield a contradiction as long as S

1
,S

2
,S

3
are unchanged and the

number of available free states is less than 4. The pruning technique therefore

involves limiting the search by keeping the failure memory updated with as many

valid entries as possible.

Dynamic processing makes use of static nonequivalence data by adding information

to the failure memory. Whenever the selector variable at level It is assigned

the value j, the following procedure is performed:

For all i E DV do: if FM
ij

is invalid then FM
ij

:= (R,FL+1);

In other words, if St is given a value j and S
i
is known from preprocessing to be

nonequivalent to S , make an entry into FMii which will prevent the assignment

S =j.
Notice that the unconditional nature of static nonequivalence information

is inherent in the failure memory entries made above since the free state

factor FL+1 insures that FM
iJ

is either valid or null.

-16-



Since the failure memory is dynamically changing it is possible for two

statically equivalent levels to be dynamically distinguished. For example, let

i and j (i4j) represent levels in the trace where 0
i
=0

j
,N
i+

1=N
j+1' 0i +1 0j +1

and Ni+20Nj+2. Clearly, preprocessing is incapable of distinguishing Si and Si.

Suppose that dynamic processing assigns 8i
+1

the value k and FM
(j+l)k

is or becomes

valid; then SiOSJ.

Dynamic nonequivalences are detected by using couple classes. A couple class

[I
pNqIs]

is defined to be [I pNqIs]= fi 11<i<M,01.-

If i and j are members of the same couple class then we say that level i and level

j belong to the same couple class. Suppose levels i and j (i<j) belong to the

same couple class then (a) if Si- 1 =5j -1 then Si=SJ (i.e. 0 is forced) and (b)

if it is known that S OS
j

then S
i-1

OS
i-1

. Hence, couple classed give dynamic

processing an efficient way to detect forced moves and to propagate dynamic

nonequivalence failure memory information. Selector variable Sj is forced if

and only if

(1) I [0j_iNjOj ]I >a,

(2) there is a level i,i <j, such that JE[OJ. N-0 ]
-1 j

and (3) S
i-1

=S
j-1

In order to implement information from (b) above, FM0.4),si...1 can be updated

as follows if it is currently invalid: FM
(j 1),Si-1

is set to (WL*,q)

if (1) levels i and j are in the same couple class,

(2) Si=n

and (3) FM
jn

contains the nonnull couple (p,q).

We will now turn our attention from nonequivalence induced contradictions to

contradictions arising from violation of the state limit L. The assignments

to S
1
,S

2
,...,5WL

*
are said to violate the state limit if they collectively

imply that the number of states in the final synthesized machine will be greater

than L. If the state limit L is violated then a fence will occur at some level

in the trace. An incipient fence exists at level 1 if for all i11[0t]*1 p
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Fblii is valid. An incipient fence implies that a new element must be added to

[0 ]* (or in other words, that a new state must be created). If 0
t
=I
k

and

IRkPel>1.k and F*>0, then F* must be decremented by one since the new state has

"committed" a "freestate" to be an element of [I
k
]*. A fence exists at level 0.

if an incipient fence exists there and I[Ik
k

]*I>L and F*=0 . A contradiction

immediately follows from a fence since it implies that a needed new state

cannot be created.

Dynamic processing uses the concept of the pseudo-assigned selector

variable to further enhance its contradiction detection mechanism.' Selector

variable S2 which is to be assigned a value later in the search is said to

be pseudo-assigned the value n if validation of FM causes a fence at level 2.
2n

That is, FMti is valid for all possible i except i=n so SQ=n will be the only

possible assignment at the later time whn WIA=2. Therefore, if there is a j

with the properties WL*<j<2 and i is in DITi, then the assignment S =n would

result in a fence at level R. Therefore failure memory entries are entered

in column n for all such j: FMin=(WL*,1) if WL*4j<1 and Q is in DVi. The

free state factor 1 insures the entries will be valid since the existence of

the potential fence implies F*=0. In addition to these failure memory entries,

pseudo-assignment at level 2 also causes entries at levels greater than

in the same way as an ordinary assignment at level R.

If the assignment of the value n to S causes a contradiction then dynamic

processing must perform a fixup or a backup. The fixup operation unassigns St

(thus causing WL* to be momentarily decremented) and then reassigns the value

n+1 to S1. The fixup operation cannot take place if S
i is forced or if the last

assignment to S2. created a new state or if validation of ' causes a fence.

When St is reassigned n+1 a failure entry must be stored in FMtn. Before we

describe hoW this entry is built, we must introduce the concept of usage infor-

mation.

Every decision made during dynamic processing is dependent on the assignment

of values to certain selector variables. For example, a forced assignment to S



depends on the values S
1-1

, and S
j-1

where 1 and j are in the same couple

class. By maintaining a record of exactly what selector variables contributed

to every assignment or failure memory entry it is possible to update the failure

memory during fixup and backup. Now we are ready to give an intuitive definition

of the structure factor. The structure factor W* is the greatest j less than or

equal to W1* such that Si contributed to the decision presently being consumated.

Whenever WL* is decreased to j all failure memory entries (p,q) with p>j become

(0,0) and all side effects (except usage information) of nulled failure memory

entries and previously assigned selector variables at levels greater than j are

removed. Thus the states of all entities other than usage are restored to the way

they were when WL* was last equal to j. Therefore whenever a fixup occurs at

level 1 as described above, the entry FM. is set to (W*,F*+1) .

Backup is initiated from level 1 if:
4f

(1) 81 is forced and FM19S is valid or

(2) St causes a contradiction and SI represents a new state or

(3) validation of FM1901 will create a fence .

The function of backup is to find the greatest j such that (1) Si contributed to

the contradiction causing the backup and (2) it is possible to apply a fixup

operation on Si. Backup operates by repeatly setting WL* to W* until a fixup

operation can be applied. Failure memory entries may be created at levels

bypassed by backup. The entries are of the form (W*,F*+1) and are located on all

levels i (in the appropriate column) such that W*>j. If backup causes WL*

to become zero then there is no L-state machine compatible with the trace. In

this case, all limit variables are increased by one and the search begins again.



In order to illustrate the operation of the algorithm, we will give a

"blow by blow" account of an example synthesis by tagging all dynamic entities

with an event number. These tags indicate the creation order of the entities.

When an entity is redefined, we will simply write the new value to the right of

the old one so that a complete history of the synthesis is available when the

algorithm terminates.

This example and a second example in Appendix 1 each consists of two

tables. The EVENT TABLE provides commentary of each event. The TRACE TABLE

provides a representation of all entities, static and dynamic, used by the

algorithm. The TRACE TABLE consists of the following columns:

Level a level number

Oi an output symbol

Ni an input symbol

Couple-class - the couple class that contains the level

Difference set - the set DVlevel

Selector values the integer values that S
level

takes during the synthesis

FMkj this column represents column j of the failure memory

matrix. An entry (Wii,Gij) is represented by the

notation Wi.

Note that the string 'entity' is tagged by writing it as 'entity' (event number).

The difference vector and couple class information is set up during the

preprocessing and the numbered events refer to the dynamic phase.
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Event(s) Level Discussion

0 Initiate synthesis, F=0, FL=0
1 1 S1 is assigned value 1 (assignment)

2-10 35,32,26,23 Failure memory entry created at a level in DV]. (DV]. resolution)
20,11,9,6,4

11,12 2,3 assignment
13 4 S4 is assigned 2 since FM41 is valid
14 32 DV4 resolution.
15 6 FM63 is made valid since S6=3+ FM32,3is valid+ fence at level 32.

The first implication follows frdin DV6 (look-ahead fence
prevention at 32 from 6)

16,17 29,23 DV4 resolution
18 20 look-ahead fence prevention at 23 from 20
19 11 DV4 resolution, since S11 is now pseudo-assigned the value 3,since

FM11 1 and FM11 9 are valid and LA=3 and F=0
,

20-22 35,29,26 DV11 resolution petrormed since S11 is pseudo-assigned
23 9 DV4 resolution
'4,25 5,6 assignment
26 7 S7 must be assigned value 1 since S5=1 and 5,7 CCs (forced move

(denoted by dot) )
27 8 forced move
28-33 9-14 Assignment/forced move
34 34 FM34 3 is validated since 14 and 35 are both members of same couple

class but S35 # 1 (dynamic nonequivalence via CC8)
35 33 dynamic nonequivalence via CC7. This implies that I[S]1>1, but

this is a contradiction since F=0 and Ls=1, so
36 33,34 the assignment S14=1 is incorrect. Invalidate FM33,1 and FM340
37,38 14,15 assignment
39 19 dynamic nonequivalence via CC9
40 16 assignment
41-42 19-18 dynamic nonequivalence via CC9
43 18 dynamic nonequivalence via CC9, since S19 cannot equal S20 (they're

both pseudo assigned) and since level 19 and level 20 are in the
same couple class it follows that S18 0 S19. Since S18 and S19
cannot be assigned 1 or 2 it follows that 1[A]l>3, but this is
a contradiction since F=0 and LA =3, so

44 18,18,19 the assignment S16=1 is incorrect. Invalidate FM19.,1, FM18,1, FM18,2
45 16 assignment
46 18 dynamic nonequivalence via CC9
47 17 assignment
48 37 DV

17
resolution

49 18 assignment
50 31 dynamic nonequivalence via CC10
51 30 dynamic nonequivalence via CC2, This implies that 1[1]1>1, this is

a contradiction since F=0 and Lp=1
52 30,31 the assignment S18 is incorrect. Invalidate FM31,2 and FM30,1
53 18 assignment
54 19 dynamic nonequivalence via CC9
55-74 19-38 assignment/forced move, synthesis complete

Figure 6. Event table for example synthesis.



I = {A,P,S,R,T}

Level

1

2

3

4

5

6

7

8

9

10
11
12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31
32

33

34

35

36
37

38

Ni

A

a

X

X
X
N.

a
G.

(Eh-.

P

A

A

A
S

A
S

A
A
A
A
A
A
A

R
A
A
S

A
A

A:

A
F.

A

S
A
A
R
A
T

Couple-class

.+

CC1
CC

2

CC
3

CC
4

CC
3

CC
4

CC
5

CC
6

CC
7

CC
6

CC
7

CC
8

CC
9

CC
9

CC
9

CC
1

CC
9

0

CC
CC3
CC

CC
4

5
CC

6
CC

7
CC
CC

8

CC
3

4

CC1
CC

2
CC

10
CC

6
CC7

CC
8

CC
3

CC
4

Difference Set

{35,32,26,23,20,11,9,6,4}

{32,29,23,11,9}

{32,29,23,11,9}

{35,29,26,20}

{35,29,26,20}

{37}

{32,29,23}

{35,29,26}

{32,29}

{35,32}

{37 }
{35}

Couple class naming for couple classes
with cardinality greater than 1.

[A-N-P] = CC1 = {2,30} [A-B-A] = CC5 = {9,23}

[P-R-A] = CC2 = {3,31} [A-N-S] = CC6 = {10,12,24,33}

[A-N-R] = CC3 = {5,7} [S-R-A] = CC7 = {11,13,25,34}

[R-R-A] = CC4 = {6,8,22,28,37} [A-P-A] = CC8 = {14,26,35}

+ a means the couple class has cardinality 1

Figure 7. Trace Table for Example Synthesis
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Selector Values

1(1)
1(11)

1(12)

2(13)

1(24)

2(25)

.1(26)

.2(27)

3(28)

1(29)

3(30)

.1(31)

.3(32)
1(33),2(37)

1(38)

1(40) 2(45)
.1(47)
2(49) 3(53)

1(55)
.2(56)
.1(57)

.2(58)

.3(59)

.1(60)

.3(61)

.2(62)

.1(63)

.2(64)

1(65)
.1(66)

.1(67)

.3(68)

.1(69)

.3(70)

.2(71)

.1(72)

.2(73)

1(74)

FM
*1

1
1
(10)

1 (9)
1

1
1
(8)

1
1
(7)

16 (42),0(44),162(46)
16

1
(41),0(44)

1
1
(6)

1

11(5)

1
1
(4)

18
1
(51)

'

0(52)

18 (50),0(52)
, ,

11(3)

14
1
(35),0(36)

1 (2)
1

17
1
(48)

FK
*2

4
1
(23)

4
I
(19)

16
1
(43)

'
0(44)

15
1
(39)

4 (17)
1

4 (16)
1

4 (14)
1

FM*3

4 (15)

18
1
(54)

4
1
(18)

4 (22)
1

4 (21)
1

14
1
(34)

'

0(36)

4
1
(20)

Level

1

2

3

4

5

6

7

8

9

10

11

12

13
14

15

16
17

18
19

20
21
22

23

24
25

26

27

28
29

30

31
32

33

34

35
36

37

38

[A-X-A] = CC = (15,16,17,19,201
[A-Y-A] = cen= {18,32}

L = 3
L
A

= 1
L
P

= 1
L
S

= 1
LT = 1

Figure 7. (Continued)

-23-



IV. A PROGRAM FOR COMPARISON

Theoretical methods do not exist for evaluation of our pruning techniques

and so it was necessary to do experimental comparisons with other algorithms.

A program was written to execute a basically enumerative algorithm which

included no sophisticated preprocessing or pruning features at all. The program

was written largely in the spirit of the diagram of Figure 4 except that a

technique for processing multiple traces in parallel was included. Whereas,

the algorithm of the previous section handles multiple traces by concatenating

them head-to-tail to make one long trace, a simpler algorithm can utilize the

several traces better by conceptually laying them side by side and working on

them simultaneously.

Parallel processing is achieved by using the algorithm already given

applied to a subset of the traces. The choice of the subset for a given stage

is illustrated in Figure 8. The current levels of the traces in that figure are

2,2,1 where the instructions are 12,12,11 followed by C2,C2,C2, respectively.

The lowest instruction followed by the lowest condition (by some ordering) is

chosen along this frontier and the next guess is made for the associated traces.

In this case, I
1

followed by C2, is lowest indicating that the next guess will

be for trace 3, the second level. At the next stage all the levels happen to

be 2 and the subset chosen for consideration consists of traces 1 and 2. (The

frontier instructions are 12,12,12 and the next conditions are C2,C2,C3.)

After a subset of the traces is chosen, the algorithm is then used to add

the appropriate transition and perform as many forced moves as pGrrOn these

traces. As before if a contradiction occurs while forcing or attempting to add

a transition, then a backup is done until some transition can be changed. Thus
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again in Figure 8, at stage 3 when traces 1 and 2 are considered, a contradiction

occurs when a transition is attempted to be found for 12 followed by C2 and

backup must occur.

The advantage of parallel processing is that if a transition which has been

added would lead to a contradiction it would likely be discovered sooner than

by the sequential processing. The latter might go through several traces

completely before the same contradiction could be found. Consider, for example,

the contradiction mentioned above between traces 1 and 2. An experiment

measuring the usefulness of this parallelism is described in Appendix 2.

Trace Trace Trace

1 2 3

1
1

1I
1

I
1

1I
1

I
1

1I
1

C
1 12 11

2
Cl 1

2
11

2
C
2

1
2

C2 I
1

C2 12 C3 I
1

Figure 8. Parallel Processing Example

The comparison algorithm should then be thought of as probably the best

possible algorithm that can be obtained without much sophistication.
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V. THE EXPERIMENTS

The performance of the two algorithms described here was compared with that

of the original paper,Biermann [9]. Turing machines were to be learned as

shown in ,..olumn one of Figtre 9 where the three letter triples on each transition

indicate the symbol read, the symbol printed, and the head move direction,

respectively. As in the original paper, Mealy machines are shown although in

our recent experiments their Moore equivalents were used. Column two indicates

the sets of traces input to the algorithms by giving the initial tape associated

with each trace. Each trace can be reconstructed by applying the proper Turing

machine to the given initial tape with the head initially placed at the leftmost

nonblank symbol. In terms cf the notation of this paper, a transition ABL,

for example, is transcribed as a tested condition Ni=A and a resulting executed

instruction Oi=BL, print a B and move left., An examination of these results

indicates that the recent programs are much faster than the original system but

part of this improvement may be due to a switch from compiled Stanford LISP 1.6

to FORTRAN. (The machine in each case was a DEC PDP-10.) The second

conclusion is that on these relatively easy problems, the enumerative parallel

algorithm is approximately as fast as its more sophisticated counterpart.

This is largely because the enumerative algorithm wasted no time on preproces-

sing or failure memory overhead and the amount of backing up was not large

enough to become catastrophic.

As a more serious test of our system, it was decided to attempt to

synthesize a universal Turing machine of the style of Minsky[241, Chapter 7. In

particular, it was proposed that if our system were led through a simulation of

the two state Turing machine in Minsky's example 7.3, it should type out a copy

of Minsky's universal machine. After some experimentation, it was found
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Turing Machine Set of traces

Enum.
Algor.

With
Pruning

From
Ref.[9]

AAR
B,.

tixxRodo

BXR

0
XXL

XXR

IP

BXL

0
/1111

AAL
BBL

XXL

BBL

el
qii,

ABL

Allit
1111,

BBR

XXR

rAiNi

till
XXL

AXL 11111

1111111111

4

AAL
BBL
XXL

AR

AAR
BBR

BBR

-AL

{ AXA, AXB, BXA
BXB, AAXA, AAXB,ABXA
ABXB, BAXA, BARB
BBXk, BBXB, AXAA}

{ABXBA, AXB, BAXAB}

{AAA, AAB,ABA,ABB
BBB,BBA,BAB,BAA}

{AAA,AAB,ABA,ABB
BAA,BAB,BBBA}

{BAAABBBAABAB,
AABABBABAAB}

{A,B,AA,AB,BA,BB,
AAA,AAB,ABA,ABB,
BAA,BAB,BBB}

{ABA,BAA,ABB,BAB,
BBA,AAB,AAABBB}

{A, B, AA, AB, BB,
AAA, AAB, ABB, BBB,
AAAA, AAAB}

fAABB,B,AAABBB1

15*

.05*

1.15

1.12

3.08

1.70

1.30

.20*

.10*

.23*

.07*

. 45*

.42*

2.18*

.70*

.63*

.22*

.17*

13.13

22.58

**

317.65

**

1106.60

151.9*

**

96.0*

0
BR /11/1

ABR ©

BBR ©

Alternate but correct solution found.
** Input traces shown are slightly different from those in [9].

Figure 9 . Synthesis times for several Turing machines in seconds.
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that this can be accomplished if the universal machine is separated into four

subroutines (as Minsky has done) which can each be synthesized individually.

The first experiment of this type yielded routine 4 synthesized properly,

routines 2 and 3 synthesized with errors, and an unending search (more than

several hours) for routine 1. A study of the results of this experiment

indicated that the example was too simple to yield a completely general

universal machine and that the two leftmoving states in routine 1 were too

similar to be distinguished by our system in a reasonable amount of time.

Consequently, a slight modification was made to Minsky's example to force the

system to produce a completely general machine, and one of the leftmoving states

in routine 1 was moved into routine 4 so that it could be synthesized independ-

ently. With these changes the universal machine of Figure 10 was constructed

easily by our best algorithm as shown in Figure 11. An instruction L or R

means move left or right while any other instruction I means "print I". All

transitions of the form iL-C-iL or iR-C-iR have been omitted from Figure 10 for

the sake of readability. Thus if the head is moving left when a symbol C is

read and no corresponding transition is shown, then the same instruction L is

executed again. The only item missing from Figure 10 is the transition to the

halt instruction which is never encountered in this infinitely long example

computation.

This universal Turing machine was constructed from a computation

simulating the two state Turing machine shown in Figure 12. The transitions

of the machine to be simulated are coded in the form Q S Q' S' D where

Q is the current state,

S is the symbol read,

Q' is the next state,

S' is the symbol printed, and

D is the direction of the move,

0 for-a left move and 1 for a right move. Thus the transition in Figure 12 from
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Figure 10. The Minsky universal Turing machine
as constructed from traces
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Routine

Number of Total CPU time
Number of Number of Simulated Length to synthesize

States Transitions moves of Input routine
Required Trace (Seconds)

1 11

2 10

3 13

4 15

30 6 846 25.23

34 4 593 9.43

36 6 455 9.78

36 6 321 11.93

Figure 11. Times for synthesis of the four routines
of the universal Turing machine

0/0

Initial State

Simulated Machine

i/oL

current state of simulated machine followed
by symbol being currently read

0000M000Y011X0111010X1000111X0100101X1011000y

Simulated Transitions of the simulated
tape machine

Initial tape for the simulation

Figure 12. The universal Turing machine was constructed
on the basis of six simulated moves of this machine.
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state 01, reading symbol 1, going to state 10, printing symbol 1, and moving

left is coded 0111010 and given to the universal Turing machine in that form.

The initial tape for the example computation which yielded the universal machine

was as shown in Figure 12 with the tape to be simulated, the current state and

symbol read, and the transitions to be used included. M marks the location of

the simulated head and the X's and Y's serve as markers to separate the

sequential items on the tape. We can conclude from this experiment that the

four routines of the universal Turing machine can be constructed from one

sample computation involved six simulated moves and the total CPU time required

for the synthesis is less than one minute. This synthesis was completed with

our best algorithm using preprocessing and pruning techniques, and none of the

four routines could ever be found by our purely enumerative program even after

searches of 45 minutes or more.

The performance of a system can sometimes be best judged if it is studied

over a class of examples rather than a few individual cases as we have above.

Toward this end, we will introduce a grammar-generated class of schema and

examine the performance of our programs over a range of problems.

Definitions:

is an operator which concatenates a program with itself

i tines. C
i

operation on the null program yields a

sequence of i copies of the instruction A.

L is an operator which adds a transition to a program leading

from the last state to the first state. The condition

associated with this transition is different from any other

associated with the last state.

Q is an operator which works on instructions. If instruction

A has any labelled transitions leading away, then Q(A)=Bi

where Bi is an instruction different from any other instruction

in the program. Otherwise Q(A)=A.
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S(i,j,k) is the program which results if Q is applied to every

instruction in (PC
i
)k.

One of,the members of this class, S(3,2,2), appears in Figure 13, and the synthesis

times for a whole range of these programs are given in Figure 14. Each solution

was conttructed from one trace which was generated as if each loop was an ALGOL

FOR-loop with an index advancing through values i=1,2. If each loop is

executed n times every time it is entered, the length of the trace will be

(inj) k. Omissions in Figure 14 occur because generated traces were long enough

to cause a memory overflow.

Figure 14 seems to indicate that problems of the type S(i,j,k) should be

done enumeratively, and that the large overhead associated with preprocessing

and maintenance of a failure memory is not worthwhile. However, if we make the

problem more difficult by equating all of the Bi's in each S(i,j,k), the

conclusion is reversed. (B=B
1
=B

2
=---) Figure 15 shows the results of this

modified experiment where the more sophisticated program produced some answers

easily that could not be found otherwise after even 45 minutes of searching.

In conclusion, we offer one example of the type of operation that we will

expect from our autoprogrammer system. A user seated at the display terminal

wishes to sort the sequence of N=4 integers 3,2,1,4 which appears on the screen.

He wishes to use a selection sorting method, and he has a number of commands

available on the screen which can be referenced with the touch of a light pen.

He sets a pointer I to the first item, 3, a pointer J to the second item, 2,

notes the two are out of order,interchanges them, increments J, and so forth.

With proper hardware and software, we are hoping he will be able to complete

the sort in a minute or two. As he goes through these steps, the autoprogrammer

will store the sequence of actions shown in Figure 16 and then will output the

indicated program. A report on this system will be soon forthcoming by

Biermann and Krishnaswamy [13].
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Figure 13. S(3,2,2)

X
4



j k=1 k=2 k=3

1 1 .00(.02) .02(.00) .00(.00)

1 2 .00(.00) .02(.02) .09(.03)

1 3 .00(.02) .09(.03) 2.32(.23)

1 4 .02(.00) .67(.12)

2 1 .00(.00) .04(.02) .34(.15)

2 2 .00(.00) .22(.03) 16.39(1.22)

2 3 .03(.02) 3.04(.15)

2 4 .02(.02)

3 1 .00(.00) .17(.23) 5.92

3 2 .04(.02) 2.49(.73)

3 3 .07(.02) (2.65)

3 4 .20(.03)

4 1 .00(.02) .65(7.48)

4 2 .05(.02) (76.70)

4 3 ,17(.03)

4 4 .52(.03)

Figure 14. Synthesis times in seconds for schema s(i,j,k) using the

program of Section III. Times for the purely enumerative algorithm

are parenthesized.



i j k=2 k=3

2 1 .05(.08) .62(45.55) *

2 2 .28(1.25) 6.15 *

2 3 2.58(20.22)

3 1 .73(16.3)

3 2 122.95(> 45 min.)

4 1 8.08(> 45 min.)

* Alternate solution found because of inadequate trace.

Figure 15. Synthesis times in seconds for schema S(i,j,k) after all Bi's have

been equated. Times for the purely enumerative algorithm are parenthesized.
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I<-1

A(I)>A(J) A(I)A(J)

J4-J +1

A(I)>A(J) A(I)A(J)

J4-J+1

J4-J +1

J>N I÷I+1

A(I)>A(J) A(I)A(J)

J-4-J+1

J-4-J+1

J>N I÷I+1

JJ+1

J>N I÷I+1

I=N HALT

A(I) > A(J)

A(I)--*A(J)

J>N

I =N

I HALT-1

The Trace The Program

Figure 16. An autoprogrammer example. Constructing a selection sort program.



Finally it should be said that the computation times given in this

section should be considered to be indicators of comparative algorithm

efficiency and not absolute measures of any kind. Any of the programs dis-

cussed here could obviously be improved and the times given indicate what

can be attained with moderately careful programming.
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VI. CONCLUSION

The experiments described here demonstrate that programs of significant

complexity can be synthesized in reasonable time from instruction traces. We

do not expect that our autoprogramming system will be greatly burdened by

long waits for the completion of a synthesis. However, it may be that this

work will have broader significance because it provides a benchmark for those

individuals who are interested in program synthesis from much weaker

information. If our system with its very complete input information has

difficulty in doing a construction, one can expect a vastly more difficult task

in doing the synthesis from simply input-output pairs, sparse traces, or formal

specifications on desired performance.
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APPENDIX 1

We will give here another example in the style of Section III. In

this synthesis, we see the algorithm search for and fail to find a solution.

Then it creates a free state and succeeds.



Event

0

Level

1-3 1,2,3
4,5 17,14
6 8

7,8 4,5
9 12

10 11

11 11,11
12 5

13 12

14,15 6,7
16 8

17 8,12,14,17

18-20 1,2,3
21,22 17,14
23,24 4,5
25 12

26 11

27 8

28-42 6-20

Discussion

initiate synthesis, F=0 and FL=0
assignment
DV3 resolution, S14 and S17 are now pseudo assigned
look ahead fence prevention at 17 from 8
assignment
DV5 resolution
dynamic nonequivalence via CC1, this implies thatl[A]l>l,

this is a contradiction, so
the assignment S5=1 is incorrect. Invalidate FM10,1 and FM11,1
assignment
DV

5
resolution

assignment
S8 is forced to be 2, this is a contradiction since FM8,2 is

valid, so
Initiate backup: S7 and S6 cant3t be changed since LE=Lc=1 and F=0

S5 cannot be changed since LB=2 and F=0
S
4

cannot be changed since Lc=1 and F=0
S3 cannot be changed since this level represents

the first occurrence of [B] and so changing S3
to 2 would simply be a renaming of an existing
state.

S2 and S1 cannot be changed since LA=Ls=1 and F=0
At this point we have backed up to the first level of the trace so
Invalidate all failure memory entries, set FL=1, F=0 and initiate
synthesis again

assignment
DV

3
resolution

assignment
DV5 resolution
dynamic nonequivalence via CC1, since this impliesl[A]l>1 we must

use available free state to allow I[A]I =2. Now F=0.
since F is now zero level 17 (or 14) can be pseudo assigned the

value 2, thus FM8 2 is made valid via the look ahead fence
prevention mechanism.

assignment/forced move, synthesis complete

Figure Al. Event table for example synthesis.
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APPENDIX 2

In order to study the effect of parallel processing in our enumerative

algorithm, a large number of tests were run on the second problem in Figure 9.

Figure A3 shows the results of these experiments where the number of modes

expanded on the search tree arc plotted versus the number of input traces with

the total of the lengths of the traces indicated beside each point. The times

for most of the runs (including input-output operations) were in the range of

2 to 5 seconds on a IBM 370/165 with the longest run requiring 9.5 seconds to

do a synthesis from 60 traces. Thus the overhead involved in the parallel

computation becomes significant indicating that there is probably an optimum

number of traces for synthesizing this machine. It can be shown that the Moore

form of this machine cannot possibly be constructed from only one trace, and

considering the uncircled points only, two or three traces did not yield a

quick synthesis. However, four or five traces seemed to be quite sufficient

and additional traces helped none whatsoever.

The circled points indicate that a second (equivalent) version of the

Turing machine was synthesized and this occurred if most of the traces processed

two or more B's before processing A's. Thus the performance was heavily

dependent on the first few transitions of each trace.
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Figure A3. The usefulness of parallelism in enumerative processing.
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I. INTRODUCTION

An autoprogrammer is an interactive computer programming system which

accepts as input example calculations and which yields computer programs for

doing those calculations. Such a system provides the user with a sort of

scratch pad and command system for executing the examples, and it synthesizes

programs on the basis of a recorded history of the steps required to do those

computations. This paper will briefly describe an autoprogramming system

which is currently under development by the authors. The reader will find

more details in [1], [2], and later reports.
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II. THE LANGUAGE

Every program created by the system is a subroutine with a name which

can be called from any subroutine including itself or which can act as a

top-level main program. A subroutine is created by

(1) declaring the name of the subroutine,

(2) declaring the data structures (arrays and variables) to be refer-

enced including information about which are arguments for the

subroutine, which will be held in common with other subroutines,

and which variables will be pointers into arrays, and

(3) executing one or more example calculations using the autoprogramming

language.

After steps (1) and (2) above are completed, the declared arrays and variables

appear on a display screen properly labelled and with all entries set to

zero. Labelled arrows appear in the arrays resulting from pointer declar-

ations in (2). At this point, a sample computation can be performed. A

light pen at the display screen is used to reference the commands of the

language which also appear on the screen and their operands among the data

structures.

Let pi stand for the i-th operand touched by the light pen after a

command is referenced. Then the commands of the language are:

S

H

start - the first instruction in a subroutine.

halt - terminate computation and return to the

calling routine.

add - p3 F p14102 or p2 4 P14102-

subtract - p3 p2-pi or p2 4- p2-pi

multiply - p3 pl*p2 or p2 pl*p2.

divide - p3 + p2/p1 or p2 + p2/pi.



move - p2 pi.

R read - p1 gets the next integer typed on the teletype.

If two operands in an array e and e are
1- 9J m,n

touched, all entries e
X,y in the array are read

such that i < x < m and j < y< n.

W write - outputs integers to the teletype using conventions

as in read, R.

T type - outputs a specific character string to the teletype.

C call subroutine - pl is the subroutine name being called

and pi for i > 1 are the arguments to be referenced.

conditional - note that the relationship p1p2p3 holds where

p
2
is either =,>, or.

The only data type currently available is "integer". Some of the commands may

take varying numbers of operands and their interpretation depends on how many

are given. For example, the result of an arithmetic instruction in left in

p
3
if three operands are given and in p

2
if only two are given. The digits

0,1,2, ,9 appear on the screen for the generation of literals. Multiple

digit literals are generated by a sequence of light pen hits on these digits.

One can best understand the operation of the system by considering how

a few simple examples of a linear search might be converted into a program.

Suppose we search the array A=(1,4.2) with N=3 elements for the elements J =

1,2, and 3. Then we declare the array, enter some typ-Lcal values (1,4,2),

and use the light pen cormands to advance the pointer across the array until

the item is found. If it is found, we return ANS +1, otherwise ANS+ 0. As

each calculation proceeds, the system stores the sequence of actions performed

as shown in Figure 1 and then



S S S

(A(1)=J) I + 1 I + 1

ANS + 1 I + I + 1 I + I + 1

ti I + I + 1 I + I -1- 1

(A(I) = j) I + I + 1

ANS + 1 (I > N)

H ANS+ 0

H

J=1 J=2 J=3

The commands generated in searching array A for J = 1,2,3

J

I + 1 A(I) =J

Otherwise

I > N

ANS +

ANS +

The shortest program compatible with the traces.

Figure 1. Constructing a program for a linear search.
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constructs the shortest program which is compatible with these traces. It can

be shown that every possible program (or its equivalent) can be so constructed

from a finite set of traces, and the art of such synthesis is described in

some detail in [1]. In this case, the program appearing in Figure 1 is correct

for linear searching and can be constructed from traces in a fraction of a

second.

If a program synthesized on the basis of one or several traces is tested

and proven to be incorrect, one or more additional sample calculations may be

input to remove the bugs. The synthesis algorithm is capable of program con-

struction from pieces of traces as well as complete traces. This means that

if a program is correct except for some small part, a portion of the calculation

involving just that pelt may be completed and input as a correction to the

program. The synthesized program is the shortest program which is compatible

with the given traces and so is guaranteed to execute those examples correctly.

Thus if the ex4mples are correct, a program with errors will be constructed

only if one exists which is compatible with the traces and has length less

than or equal to the correct program.
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The fact that subroutines can be called while executing a sample cal-

culation means that large programs can be constructed using many smaller

building blocks. A subroutine called in this way presumably exists from an

earlier synthesis and is easily available. if it does not exist, the user

is asked to supply the result that it would have yielded if it did exist!

Thus the sample calculation can proceed whether or not the subroutines upon

which it depends have already been constructed. Clearly, this leaves the

possibility open for so-called "top-down" programming.

All arrays and variables for all subroutines are stored in a hash

table where the keys are computed from a combination of the name, the assoc-

iated subroutine name, and the level of the subroutine call. This means that

(1) arrays are effectively infinitely large as long as the hash table

does .ot overflow so that no dimensions are associated with arrays,

and

(2) subroutines may be called recursively.

A "common" feature is available for transmittal of information between sub-

routines.

Another feature to be included will be the "continue" feature. If a

sample calculation is quite long and repetitive, there is a good chance that

part or all of the program can be correctly constructed before the sample

calculation is completed. Then a "continue" key may be touched midway through

the sample causing a program synthesis on just the portion of the trace which

is available. Subsequent inputs through the "continue" key will each cause

another instruction from the synthesized program to be executed. If the pro-

gram yields an error, a "backup" key will be available allowing the last one

or several instructions to be "unexecuted", the corrected instructions may be

inserted with the light pen, and the calculation can continue. As an example,

if a column of ten integers is to be added and then printed, the user may add

two or three with the light pen to cause a program with a loop to be constructed.
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Then he may hit the continue key repeatedly until all are added, and finally

insert (again with the light pen) the instruction to do the printing. The

process of trace construction should not, therefore, be thought of as simply

a long process of light pen work. The light pen will be used alternately

with the continue key and backup key to allow the easiest and most carefree

possible completion of examples.

A great deal of effort has gone into making the system easy and comfor-

table to use. The user may input instructions at any rate he desires without

significant delays for internal processing. Each hit of the light pen is

acknowledged by a momentary (one second) disappearance of the designated image.

Erroneous light pen hits which result in illegal instructions cause a message

to be output at the teletype, the illegal instruction is deleted, and the user

may repeat the instruction without any special action. The sensitized points

on the screen are well separated so that incorrect hits are not common. Sub-

routines may be created or called at any time in a carefree manner. If in

the process of doing a computation it is desired to declare a new array or

pointer, this can be done at any time without interruption of the current process.

It is hoped that the system will be so easy to use that anyone will be able to

run it with less than an hour instruction.
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III. THE CURRENT STATUS OF THE SYSTEM

As already mentioned, this system is still under development and not all

of the features given above are operative. The three major parts of the

program, the light pen and display routines, the language interpreter, and the

program synthesizer are all running individually and debugged. The program

synthesizer has been extensively tested for several months as described in [1].

The coordinator of these programs and the interface routines are still only

partially operative but should be completed within a few months.

The photograph of. Figure 2 shows a user with light pen referencing an

array on the display screen. The display and keyboard at right are used for

array declarations, input-output for the synthesized program, error messages,

and so forth. Figure 3 shows the display screen after the declarations have

been made for a matrix multiply calculation. The autoprogrammer instructions

appear in a list at the right, and the ten digits for literal generation are

at the bottom of the screen. Figure 4 shows the screen at the end of the

computation, and Figure 5 gives the synthesized program produced after about

50 milliseconds of internal synthesis time. Many other programs of similar

complexity have also been synthesized by the system.

Figure 2. The second author prepares to execute a matrix multiplication.
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* END TRACE

I J N P

A B

0 0 0 0

I,J fJ,K $I,K

0 0 0

M,N

TEMP

N,P

B

LITERALS: 0 1 2 3 4 5 6 7 8 9

Figure 3. The autoprogrammer display before
executing a matrix multiply calculation

COMMANDS:

+ ADD

SUB

* MPY

/ DIV

MOVE

READ

WRITE

NOTE

INSTRUCTIONS:

DELETE

DECLARE

PAUSE



* END TRACE

I J K

A B

1 2 5 6

J,K

3 4 7 8

M,N

TEMP

I,J

M

1N,P

COMMANDS:

N 13
+ ADD

- SUB

C
* MPY

19 22

/ DIV

43 50

t I,K

LITERALS: 0 1 2 3 4 5 6 7 8 9

Figure 4. The display after the
calculation has been completed
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MOVE

READ

WRITE

NOTE

INSTRUCTIONS

DELETE

DECLARE

PAUSE



Read M
Read N
Read P

1

K4- I
J4- K

Read A(1,I) to A(M,N)
Read B(1,1) to B(N,P)

$

TEMPwA(I,J) * B(J,K)

C(I,K) + TEMP

J.-J+ 1

rJ > N

1

.4-I + 1 otherwise

otherwise

I > M

I.4-1
K4- K + 1 otherwise

1K > P

IHalt I

Figure 5. The synthesized program for multiplcation of an M by N matrix times
an N by P matrix.



IV. SOME PROBLEMS

Light pens are inherently very slow devices and will never be adequate

input devices for autoprogrammer systems. A more ideal hardware arrangement

would be to have a touch-sensitive display screen mounted down flush with a

desk top. Then the user's fingers could leap around on the screen at the speed

possible on a modern desk calculator inputting individual hits at the rate of

several per second. There is every reason to believe that a person can think

fast enough to achieve that rate which is nearly an order of magnitude faster

than possible with a light pen. However, we feel that our light pen driven

system will clearly show the value of the autoprogrammer idea and will consti-

tute a high qualit basis for further work.

The size of the display screen is also an important limiting factor. It

is desirable to have all the current data structures visible at one time but

our screen is too small for the display of many arrays. This can be solved

with windowing features, the use of multiple displays, aad the dependence on

subroutines, but all of these alternatives have difficulties. Windowing

,
features are a bother for the user, multiple displays are expensive, and it is

not always easy to hide a significant number of arrays in subroutines. Fortu-

nately, programs can be synthesized on the basis of relatively small samples

so that the size of displayed arrays need not be large.

Finally, we are concerned about the ability of humans to produce correct

example computations. Our system moves the debugging problem from the domain

of language syntax and semantics to the domain of examples, but the possibility

for human error remains. If the example calculation cannot be generalized into

a correct prugram, certainly our system cannot succeed. For example, if we

want a program which inputs a prime number and outputs the next sequential

prime number, we cannot offer as a sample computation: input the integer

11, add 2, print the result. The example calculation must execute the instruc-
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tions of some correct program in the order that the correct program would

execute them. Only if this constraint is met will that program be found. A

central theme of our current research is to weaken this requirement.
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